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Note 

Split-Step Spectral Method 
for Nonlinear Schrodinger Equation 

with Constant Background Intensities 

In 1973 Hasegawa and Tappert [l] showed that inclusion of an intensity- 
dependent refractive index in the evolution equation describing pulse envelope 
propagation in an ideal lossless optical single-mode fiber leads to the nonlinear 
Schrbdinger equation (NLSE). Zakharov and Shabat [2,3] have shown analyti- 
cally that the NLSE has soliton solutions irrespective of the fiber group-velocity 
dispersion (GVD). In the case of anomalous dispersion, GVD < 0, the solitons are 
termed bright as they consist of a light pulse. On the other hand, only “dark” 
solitons which consist of a localized dip in a constant background intensity exist, 
in the case of normal dispersion, GVD > 0. In 1980 bright solitons were observed 
experimentally [4], while an experimental indication of dark soliton propagation 
has been obtained only recently [.5, 61. 

The NLSE with periodic boundary conditions, has been solved numerically by 
the split-step spectral method described in [7]. In an earlier note [S], the method 
was improved by including an additional term in the NLSE, which absorbs the 
outgoing radiation at the boundaries (see also [9]). However this term was only 
capable of absorbing radiation in the case of bright soliton evolution. In this note 
we generalize the method to include dark pulse propagation. Dark pulses have 
previously been treated numerically by Blow and Doran [lo], using explicit 
(,simple) finite difference approximations. However, dark pulses appear not to have 
been investigated by spectral methods with absorbing boundaries. 

In the appropriate system of normalized coordinates the NLSE can be 
written [4] 

(1) 

The quantity 2~ assumes the value - 1 for positive GVD and + 1 for negative GVD. 
Without loss of generality, we may, in the case of dark pulse propagation, choose 
the normalized background intensity to be equal to 1, such that 

144 tjl -+ 1, z~,(x, t j + 0 

For the bright soliton, we have 

as 1x1 + cxj (GVD > 0). Pa) 

d-G t) -+ 0 as 1x1 + CC (GVD CO). WI 
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In our modified version of the NLSE, we add the loss term, i;,(x) ;d( /U ’ - I ), snC 
obtain 

where j' is a real function of s. Here 

y(x) = yo(sech’ [/Z(s - L/Z)] i seck2 [/?(.u + L::2)] j:. iZb; 

This introduces a smooth loss (gain) at the boundaries x = -L/z and .‘; = L/2 for 

yo( /u]’ - I ) > 0 ( CO). The constant parameters ;j0 and 17 in Eq. (3b), determine the 
height and the width of the “barriers.” The constant /J is chosen such that the refrec- 
tions from the boundaries are minimized, ensuring at the same time, a minima: 
perturbation region in between. The choice of y. is dictated by the wrap-amund of 
radiation. At the boundaries, we assume the periodicity conditions 

u( -L/2, r) = u( Li’2, 1) 

and 

u,( - L/2, tj = uJLj2, rj. (3,) 

For dark pulse propagation we choose y,, > 0, and the additional term in Eq. i 3a 1 
has the effect of absorbing outgoing radiation without violating the periodici:y 
requirement Eq. (3~) of the split-step method (i.e., no wrap-around of r&iar.ion ). 

For bright puke propagation, a negative y. must be chosen. 
To apply the generalized split-step method, the modified NLSE Eq. (jai is 

into a linear and a nonlinear part. The nonlinear part 

has She sokutien 

Second, the linear part of Eq. (3a), igC + (a/2) $.Yil,, = 0, is solved in Fourier space by 

8(k, t) = a(k, 0) exp [ - i&t2 1. ;’ ,$ ‘2 

The solution is advanced one time step At by (i) obtaining $.Y. 0;) from ij(:~, 0 ! 
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by means of (5) with 11(x, 0) = u(x, 0), (ii) inserting the Fourier transform of 
zi(x, At) as O(k, 0) in (6) 

8(k, At)=I’: 6(x, At) expfikx) dx.exp{ -iCtk2 At/2), 
--s (7) 

and (iii) transforming the result O(k, At) back to x-space, 

@k, At) exp( -ikx) dk. (8) 

The computed value is then used in Eq. (5) instead of ii(x, 0) to advance the 
solution another step. This method is accurate to first order in At and all orders in 
Ax and is unconditionally stable [ll]. 

Figure 1 shows the evolution of a symmetric dark pulse 

ZI(X, 0) = (1 - sech2 x)‘:‘, (9) 

in the case of normal dispersion LX = 1. The difference between Fig. la and Fig. 1 b 
demonstrates the importance of adding absorption at the boundaries in the NLSE, 
in the case of pulses with nonvanishing background intensity. 

Figure 2 depicts the evolution for the initial excitation 

u(x, 0) = [ 1 - sech’ (x/8)] 1’2, (10) 

which by a scaling is seen to correspond to d(s, 0) = 8[ 1 - sech’ s] 1/2, a dark pulse 
in a larger background intensity. Note that the ordinate in Fig. 2 is 1 - 1~1, 
providing a better visual resolution of the dark pulses. 

In conclusion, it has been shown that the addition of a loss (gain) term 

FIG. 1. Evolution of the symmetric initial dark pulse, Eq. (9), with dynamics given by Eq. (3) with 
normal dispersion (a= -1) and (a) without absorption, )10=0, (b) with absorption, /I= 1, yo=20. 
L = 25.6, An = 0.1, dr = 0.005. 
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iy(x) u(jlci’- 1) to the NLSE, has the effect of absorbing radiation a~ the 
boundaries in the split-step spectral method. This method is applicable to bo:h 
bright and dark solitons. 
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